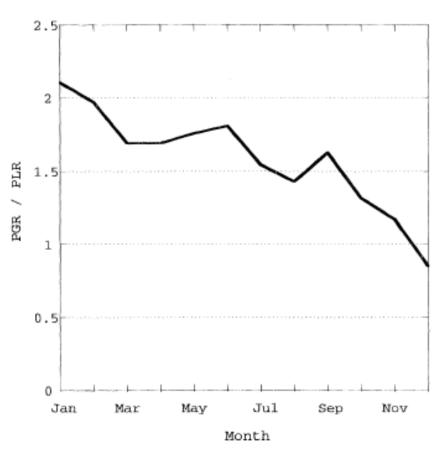

Economics of Behavioral Finance

Lecture 2

Gains and Losses

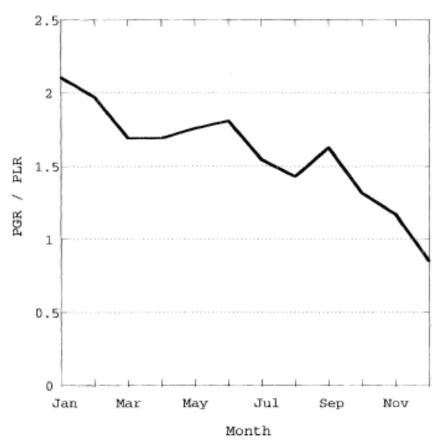
- First some definitions
 - Suppose you bought 100 shares of HSBC at \$80 per share
 - If the price of HSBC is now \$90 per share, you are making a profit
 - Suppose you sell 60 of the shares, the Percentage of Gains Realized (PGR) = 60 shares/100 shares = 60%
 - We can definite a similar ratio if you are making a loss. We call that the Percentage of Losses Realized (PLR)



An Example – Small Investors' Holdings

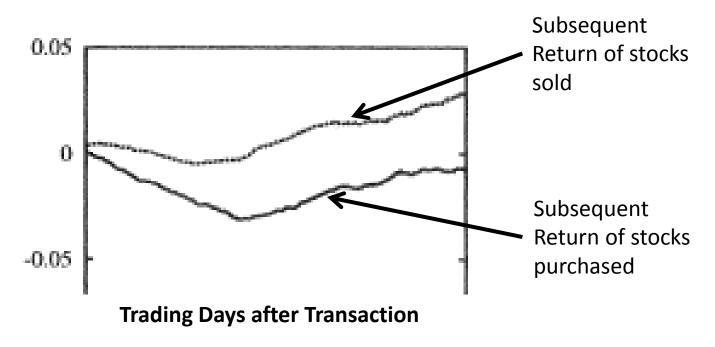
 The following graph shows, for a large group of small stock investors in U.S.,

% of stock gains realized
% of stock loss realized


- What do you notice?
 - Gains are realized a lot more than losses

Source: Odean, Terrance. 1998. "Are Investors Reluctant to Realize Their Losses?" *Journal of Finance*.

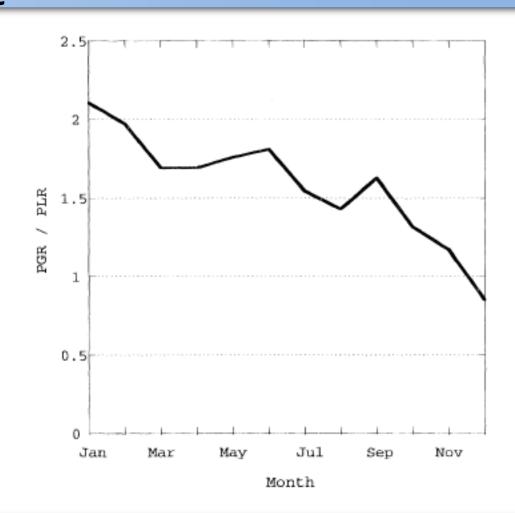
An Example – Small Investors' Holdings


- What are small investors so much more willing to sell stocks that gained in value than those that that lost value?
 - 1. Do you think this is rational?
 - 2. Why/why not?
 - 3. Do you think this behavior improves or worsen the investors' portfolio performance?

Source: Odean, Terrance. 1998. "Are Investors Reluctant to Realize Their Losses?" *Journal of Finance*.

An Example – Small Investors' Holdings

- On average the performance was worse
 - Stocks sold by small investors on average gain value later on

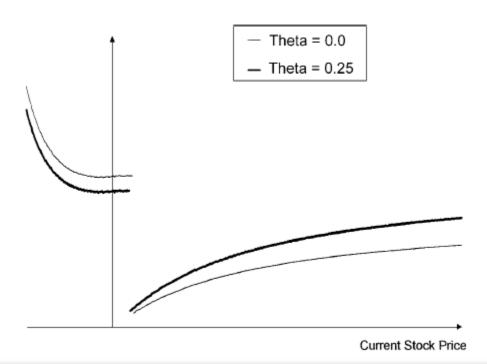


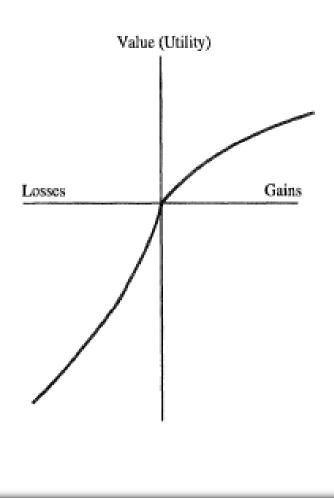
Source: Odean, Terrance. 1999. "Do Investors Trade Too Much?" *American Economic Review*.

Disposition Effect

Investors have a tendency to hold stocks that have lost value

Ratio of stocks sold in gain over stocks sold in loss

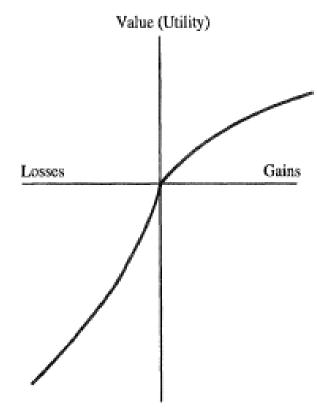

Possible Reasons behind Disposition Effect


- Tax deduction
- Belief in mean-reversion
- Prospect Theory

Which property of Prospect Theory could drive disposition effect?

Diminishing-sensitivity

Demand:



Just one problem though...

Loss-aversion = very risk averse initially PGR/PLR:

Expected return	Number of trading periods within the year			
μ	T = 2	T=4	T = 6	T = 12
1.03	-	-	-	0.55/0.51
1.04	-	-	0.52/0.55*	0.54/0.52
1.05	-	-	0.54/0.53	0.59/0.45
1.06	-	0.70/0.25	0.54/0.53	0.58/0.47
1.07	-	0.70/0.25	0.54/0.53	0.57/0.49
1.08	-	0.70/0.25	0.49/0.59*	0.47/0.60*
1.09	-	0.43/0.70*	0.49/0.59*	0.46/0.61*
1.10	0.0/1.0*	0.43/0.70*	0.49/0.59*	0.36/0.69*
1.11	0.0/1.0*	0.43/0.70*	0.49/0.59*	0.37/0.68*
1.12	0.0/1.0*	0.28/0.77*	0.24/0.81*	0.40/0.66*
1.13	0.0/1.0*	0.28/0.77*	0.24/0.83*	0.25/0.78*

Source: Barberis and Xiong. 2008. "What Drives the Disposition Effect? An Analysis of a Long-standing Preference-based Explanation" *Journal of Finance*.

- Just one problem though...
 - Loss-aversion = very risk averse initially
 - Stock return has to be quite high to induce investment
 = further away from the reference point when stock
 gain value than when stock lose value
 - Curvature of utility is small except at the reference point = almost risk neutral
 - Investor might invest more after a gain than after a loss

- Gain/loss utility only over realized profit, not profit on paper
 - No change in gain/loss utility until stocks are sold
 - Initial purchase based on normal, non-gain-loss utility (e.g. CRRA)
 - If selling a stock at a gain, the gain utility enters → more incentive to sell
 - If selling a stock at a loss, the loss utility enters → less incentive to sell

Source: Barberis and Xiong. 2009. "What Drives the Disposition Effect? An Analysis of a Long-Standing Preference-Based Explanation." *Journal of Finance.*

Laboratory Experiment

Controlled experiment, subjects decides whether to buy or sell 6 assets for 14 periods

 Assets have predetermined probability of moving up

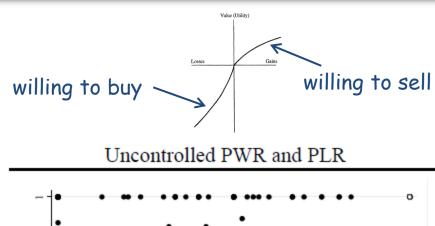
Experiment 1

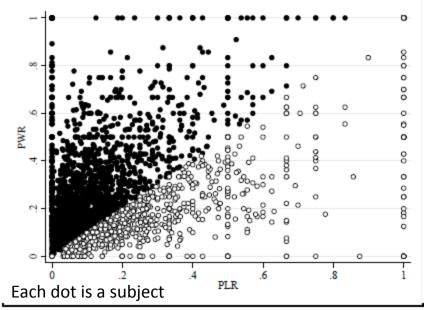
Free trading

Experiment 2

 Automatic force sell after every period

Source: Weber and Camerer. 1998. "The deposition effect in securities trading: an experimental analysis" *Journal of Economic Behavior and Organization*.


Laboratory Experiment


Similar setup to the previous experiment

Question at hand: is there a relationship between PGR (PWR in this paper) and PLR?

- Loss aversion implies both a willingness to sell at gain and a willingness to buy/hold at loss
- Overall, PGR > PLR as in previous studies
- But subjects who sell too soon are not the same subjects who hold on for too long

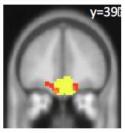
Source: Weber and Welfens. 2008. "Splitting the Disposition Effect: Asymmetric Reactions Towards 'Selling Winners' and 'Holding Losers'"

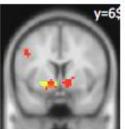
Gain/Loss Over Realized Profit

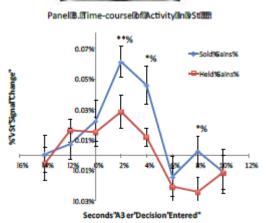
- If Gain/loss utility is only over realized profit, not profit on paper
 - Expect a burst of utility at trade
 - Expect the burst to be larger when gain/loss is large
- Neuroeconomics
 - Use fMRI to monitor brain activity when subjects make decision
 - Burst of utility corresponds to increase in brain activity of specific region

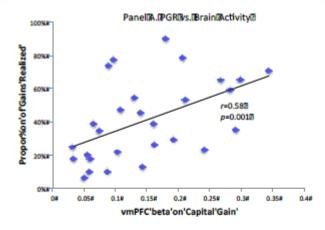
Neural Evidence


vmPFC


- Right behind nose bridge
- Signals value of option
- Strong activity when gain/loss is large


VSt


- Center of brain
- Signal change in expected utility
- Strong activity when trade occurs


Source: Fryman et al. 2014. "Using Neural Data to Test a Theory of Investor Bahavior: An Application to Realization Utility." Forthcoming in *The Journal of Finance*.

